7,131 research outputs found

    Resummation Methods at Finite Temperature: The Tadpole Way

    Full text link
    We examine several resummation methods for computing higher order corrections to the finite temperature effective potential, in the context of a scalar ϕ4\phi^4 theory. We show by explicit calculation to four loops that dressing the propagator, not the vertex, of the one-loop tadpole correctly counts ``daisy'' and ``super-daisy'' diagrams.Comment: 18 pages, LaTeX, CALT-68-1858, HUTP-93-A011, EFI-93-2

    PHOEBE 2.0 – Where no model has gone before

    Get PDF
    phoebe 2.0 is an open source framework bridging the gap between stellar observations and models. It allows to create and fit models simultaneously and consistently to a wide range of observational data such as photometry, spectroscopy, spectrapolarimetry, interferometry and astrometry. To reach the level of precision required by the newest generation of instruments such as Kepler, GAIA and the arrays of large telescopes, the code is set up to handle a wide range of phenomena such as multiplicity, rotation, pulsations and magnetic fields, and to model the involved physics to a new level

    Calculable Upper Limit on the Mass of the Lightest Higgs Boson in Any Perturbatively Valid Supersymmetric Theory

    Full text link
    We show that there is a calculable upper limit on the mass of the lightest Higgs boson in any supersymmetric theory that remains perturbative up to a high scale . There are no restrictions on the Higgs sector, or the gauge group or particle content. We estimate the value of the upper limit to be m_{\hcirc} < 146 GeV for 100 GeV < MtM_t < 145 GeV, from all effects except possibly additional heavy fermions beyond top (which could increase the limit by 0-20 GeV if any existed); for MtM_t > 145 GeV the limit decreases monotonically. We expect to be able to decrease the value of the upper limit by at least a few percent by very careful analysis of the conditions. It is not normal in models for the actual mass to saturate the upper limit.Comment: 8 pages, UM-TH-92-24, Plain TeX. (One table available by fax on request to [email protected]

    A No-Lose Theorem for Higgs Searches at a Future Linear Collider

    Get PDF
    Assuming perturbativity up to a high energy scale 1016\sim 10^{16} GeV, we demonstrate that a future e+ee^+e^- linear collider operating at s=\sqrt{s} = 500 GeV with L=\int{\cal L}= 500 fb1^{-1} per year (such as the recently proposed TESLA facility) will detect a Higgs boson signal regardless of the complexity of the Higgs sector and of how the Higgs bosons decay.Comment: 4 pages, LaTe

    The Reach of CERN LEP2 and Fermilab Tevatron Upgrades for Higgs Bosons in Supersymmetric Models

    Get PDF
    Luminosity upgrades of the Fermilab Tevatron pbar-p collider have been shown to allow experimental detection of a Standard Model (SM) Higgs boson up to mHSM120m_{H_{SM}}\sim 120 GeV via WHSMνbbˉWH_{SM} \to \ell\nu b\bar{b} events. This limit nearly saturates the parameter space for many models of weak scale supersymmetry (SUSY) with a minimal particle content. It is therefore interesting to examine the SUSY Higgs reach of future Tevatron experiments. Contours are presented of Higgs boson reach for CERN LEP2 and Tevatron luminosity upgrades for three models of weak scale SUSY: the Minimal Supersymmetric Standard Model (MSSM), the minimal Supergravity model (mSUGRA) and a simple Gauge Mediated SUSY Breaking Model (GMSB). In each case we find a substantial gain in reach at the Tevatron with integrated luminosity increasing from 10 fb^{-1} to 25-30 fb^{-1}. With the larger integrated luminosity, a Higgs search at the Tevatron should be able to probe essentially the entire parameter space of these models. While a discovery would be very exciting, a negative result would severely constrain our ideas about how weak scale supersymmetry is realized.Comment: 12 pages + 7 figures. Uses REVTEX and epsf macros. Several references added, stated value of A-parameters corrected, note added reguarding sgn(mu) dependence in MSSM case. To appear in Physical Review

    Transport studies of La_(2-x)Sr_xCuO_4 near the insulator-metal-superconductor transition

    Get PDF
    We have measured the temperature-dependent resistivities of a series of samples of La_(2-x)Sr_xCuO_4 with 0.02≤x≤0.1 over the temperature range 0.05 K≤T≤300 K. We find the onset of superconductivity as x is increased to be correlated with a substantial drop in the magnitude of the normal-state resistivity. We observe no change, however, in the qualitative shape of the resistivity as the superconducting threshold is crossed. We also find that the low-temperature (T≤8.0 K) resistivities of the least concentrated samples can be described by variable range hopping, with a crossover between Coulomb gap and single-particle behavior occurring as x is increased

    Summing One-Loop Graphs at Multi-Particle Threshold

    Full text link
    It is shown that the technique recently suggested by Lowell Brown for summing the tree graphs at threshold can be extended to calculate the loop effects. Explicit result is derived for the sum of one-loop graphs for the amplitude of threshold production of nn on-mass-shell particles by one virtual in the unbroken λϕ4\lambda \phi^4 theory. It is also found that the tree-level amplitude of production of nn particles by two incoming on-mass-shell particles vanishes at the threshold for n>4n > 4.Comment: 13 pages, LaTeX, TPI-MINN-92/45-

    Higgs bosons in the simplest SUSY models

    Get PDF
    Nowadays in the MSSM the moderate values of tanβ\tan\beta are almost excluded by LEP II lower bound on the lightest Higgs boson mass. In the Next-to-Minimal Supersymmetric Standard Model the theoretical upper bound on it increases and reaches maximal value in the strong Yukawa coupling limit when all solutions of renormalization group equations are concentrated near the quasi-fixed point. For calculation of Higgs boson spectrum the perturbation theory method can be applied. We investigate the particle spectrum in the framework of the modified NMSSM which leads to the self-consistent solution in the strong Yukawa coupling limit. This model allows one to get mh125m_h\sim 125 GeV at values of tanβ1.9\tan\beta\ge 1.9. In the investigated model the lightest Higgs boson mass does not exceed 130.5±3.5130.5\pm 3.5 GeV. The upper bound on the lightest CP-even Higgs boson mass in more complicated supersymmetric models is also discussed.Comment: 27 pages, 5 figures included, LaTeX 2e. Plenary talk at the Conference of RAS Nuclear Physics Department 2000 in ITEP, Moscow, Russia; to appear in Phys. Atom. Nuc

    Constraints on the Universal Varying Yukawa Couplings: from SM-like to Fermiophobic

    Get PDF
    Varying the Standard Model (SM) fermion Yukawa couplings universally by a generic positive scale factor (FYuF_{Yu}), we study the phenomenological fit to the current available experimental results for the Higgs boson search at hadron colliders. We point out that the Higgs production cross section and its decay branching ratio to γγ\gamma\gamma can be varied oppositely by FYuF_{Yu} to make their product almost invariant. Thus, our scenario and the SM Higgs are indistinguishable in the inclusive HγγH\to \gamma\gamma channel. The current measurements on direct Yukawa coupling strength in the Hbbˉ/ττH\to b\bar{b}/\tau\tau channel are not precise enough to fix the scale factor FYuF_{Yu}. The most promising is the vector-boson-fusion channel in which the CMS has already observed possible suppression effect on the Yukawa couplings. Further more, the global χ2\chi^2 fit of the experimental data can get the optimal value by introducing a suppression factor FYu1/2F_{Yu}\sim1/2 on the SM Yukawa couplings.Comment: 16 pages, 12 figures, 5 tables, update analysis is supplemente

    Particle spectrum in the modified NMSSM in the strong Yukawa coupling limit

    Get PDF
    A theoretical analysis of solutions of renormalisation group equations in the MSSM corresponding to the quasi-fixed point conditions shows that the mass of the lightest Higgs boson in this case does not exceed 94±5GeV94\pm 5\text{GeV}. It means that a substantial part of the parameter space of the MSSM is practically excluded by existing experimental data from LEP II. In the NMSSM the upper bound on the lightest Higgs boson mass reaches its maximum in the strong Yukawa coupling regime, when Yukawa constants are considerably larger the gauge ones on the Grand Unification scale. In this paper a particle spectrum in a simple modification of NMSSM which leads to a self-consistent solution in the considered region of the parameter space is studied. This model allows one to get mh125GeVm_h\sim 125\text{GeV} even for comparatively low values of tanβ1.9\tan\beta\ge 1.9. For an analysis of the Higgs boson spectrum and neutralino spectrum a method for diagonalisation of mass matrices proposed formerly is used. The mass of the lightest Higgs boson in this model does not exceed 130.5±3.5GeV130.5\pm 3.5\text{GeV}.Comment: 34 pages, 5 figures included, LaTeX 2
    corecore